

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Adsorption of Eu(III) onto TiO₂: Effect of pH, concentration, ionic strength and soil fulvic acid

Xiaoli Tan^{a,b,*}, Ming Fang^c, Jiaxing Li^a, Yi Lu^a, Xiangke Wang^{a,b,*}

^a Key Lab of New Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 Anhui, PR China

^b School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, PR China

^c Institute of Solid States Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031 Anhui, PR China

ARTICLE INFO

Article history: Received 1 December 2008 Received in revised form 9 February 2009 Accepted 9 February 2009 Available online 20 February 2009

Keywords: TiO₂ Eu(III) FA Adsorption Surface complexation

ABSTRACT

The effects of pH, initial Eu(III) concentration, ionic strength and fulvic acid (FA) on the adsorption of Eu(III) on TiO₂ are investigated by using batch techniques. The results indicate that the presence of FA strongly enhances the adsorption of Eu(III) on TiO₂ at low pH values. Besides, the adsorption of Eu(III) on TiO₂ is significantly dependent on pH values and independent of ionic strength. The adsorption of Eu(III) on TiO₂ is attributed to inner-sphere surface complexation. The diffuse layer model (DLM) is applied to simulate the adsorption data, and fits the experimental data well with the aid of FITEQL 3.2. X-ray photoelectron spectroscopy (XPS) is performed to study the species of Eu(III) adsorbed on the surfaces of TiO₂/FA–TiO₂ hybrids at a molecular level, which suggest that FA act as "bridge" between Eu(III) and TiO₂ particles to enhance the ability to adsorb Eu(III) in solution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the context of safety of nuclear waste repositories as well as for the assessment of radionuclide mobility in the environment. the interaction among lanthanides/actinides, oxides and humic substances (HSs) has become a main subject of various studies. Adsorption behavior of radionuclides to minerals is a major process controlling the physicochemical behavior of radionuclides in the environment. Therefore, the knowledge of radionuclide adsorption is of great importance in the management of radioactive wastes containing long-lived actinides and lanthanides. Eu(III) is a trivalent lanthanide and a chemical homologue of trivalent actinides as both trivalent lanthanides and actinides exhibit similar adsorption properties. Adsorption of Eu(III) on hydrous metal-oxides and minerals has been studied extensively [1–15]. It was found that the adsorption of Eu(III) on minerals was strongly dependent on pH values and the adsorption of Eu(III) increased with increasing pH value. A positive effect of HSs on the adsorption of Eu(III) at low pH value and a negative effect at high pH value were found [3,4]. Different surface complexation models (SCMs) were applied to fit the experimental data, to interpret and to appraise the surface adsorption processes under different experimental conditions [6-10]. The interaction of Eu(III) and minerals was studied by using extended X-ray adsorption fine structure (EXAFS) and time resolved laser fluorescence spectroscopy (TRLFS), which allow to clarify the uptake mechanism of trace elements by minerals [11–15]. A comprehensive understanding of the underlying physicochemical process is necessary for the evaluation of long-term performance assessment of a nuclear waste repository.

Humic substances are the major fraction of dissolved organic compounds present in surface water and soils. The high carbon content (\sim 50–60%) of both aliphatic and aromatic character and rich in oxygen-containing functional groups (such as carboxy, phenolic, alcoholic and quinoid groups) make HSs are the primary metal-complexing chelate and hence perform a vital influence on the environmental fate, bioavailability, toxicity and mobility of heavy metal ions [16,17]. Therefore, it is important to study the adsorption and complexation of metal ions to HS-mineral hybrids, especially to study the interactions between long-lived actinides/lanthanides and HS-mineral hybrids [1–4,16].

 TiO_2 is an ideal adsorbent for studying the effect of the surface functional groups on adsorption. Its solubility is negligible and the point of zero charge (pH_{pzc}) at neutral pH value makes it possible to study the adsorption of metal ions on TiO_2 over a broad range of pH and ionic strength [18]. Lots of recent publications have been focused on the adsorption of metal ions (such as Cu, Mo, Co, Cr, Pb, Th, Pu) by TiO_2 in aqueous solution to study the adsorption capacities, mechanisms, process parameters and so on [18–25]. Kim et al. [19] studied the adsorption of Cu on anatase-type TiO_2 and found that the adsorption of Cu increased rapidly with increasing pH value

^{*} Corresponding authors. Tel.: +86 551 5591368; fax: +86 551 5591310. E-mail addresses: tanxl@ipp.ac.cn (X. Tan), xkwang@ipp.ac.cn (X. Wang).

^{0304-3894/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2009.02.051

from 2 to 5 and maintained high level over pH 5. Adsorption of Mo on hydrous TiO₂ (anatase) particles indicated that the maximum adsorption appeared in the acidic pH range at low surface loading and the Langmuir model described the adsorption behavior well [21]. Results of Cr(VI) adsorption on TiO₂ in the presence of humic acid (HA) indicated that the adsorption capacity of TiO₂ was greatly influenced by the presence of HA [23]. The presence of Cr(VI) inhibited the adsorption of HA on TiO₂, leading to the decreased adsorption capacity of HA on TiO₂ with increasing Cr(VI) concentration. Adsorption of Th(IV) on TiO₂ indicated a reversible formation of an inner-sphere complex with strong pH dependence [18]. Adsorption of Pu(VI) on TiO₂ was ionic strength independent, and inner-sphere complex was considered to be formed at TiO₂ surface [25]. Although the adsorption of metal ions on TiO₂ has been extensively studied, the investigations on the adsorption of Eu(III) on nanosized TiO₂ particles are still scarce, especially the influence of HSs on the physicochemical behavior of Eu(III) on nanoparticles of TiO₂.

The study of Eu(III) adsorption onto TiO₂ is helpful and essential for the evaluation of trivalent lanthanides and actinides physicochemical behavior. The aims of the present study are (1) to study the effect of pH, concentration, ionic strength and fulvic acid (FA) on Eu(III) adsorption on TiO₂; (2) to study the influence of FA on Eu(III) adsorption onto TiO₂; (3) to determine the adsorption isotherms of Eu(III) to TiO₂; (4) to model the experimental data with the aid of FITEQL 3.2; (5) to identify the local species of Eu(III) adsorbed on TiO₂ surfaces and (6) to evaluate the adsorption mechanism of Eu(III) on TiO₂.

2. Materials and methods

2.1. Materials

Eu stock solution was prepared from Eu_2O_3 by dissolution, evaporation and redissolution in 10^{-3} mol/L perchloric acid. The radiotracer $^{152+154}Eu(III)$ was used and the concentration was analyzed by liquid scintillation counting using a Packard 3100 TR/AB Liquid Scintillation analyzer (PerkinElmer). The scintillation cocktail was ULTIMA GOLD AB (Packard).

The sample of TiO₂ (P25, from Degussa Corporation) is composed of 80% anatase and 20% rutile (from the X-ray diffraction (XRD) result shown in Fig. 1). The specific surface area and surface site density values, as employed in the adsorption modeling, were $55 \text{ m}^2/\text{g}$ and $2.74 \times 10^{-4} \text{ mol/g}$ [22], respectively. The pH_{pzc} of TiO₂ sample was measured to be 6.15 [24].

Fig. 1. The XRD pattern of P25 sample.

Table 1

³ C NMR characteristics	chemical shift ppm)% of FA.	

HSs	0–50	51-105	106–160	161–200	Aromaticity
FA	16	28	19	39	30

Soil FA was extracted from the soil of Hua-Jia county (Gansu province, China), and has been characterized in detail [26,27]. Cross-polarization magic angle spinning (CPMAS) ¹³C NMR spectra of FA was divided into four chemical shift regions, 0–50, 51–105, 106–160 and 161–200 ppm. These regions were referred to as aliphatic, carbohydrate, aromatic and carboxyl regions. The percentage of total intensity for each region is estimated by integrating the CPMAS ¹³C NMR spectra with each region and the fraction of aromatic groups calculated by expressing aromatic C as percentage of the sum of aliphatic C (0–105 ppm)+aromatic C (106–160 ppm) is listed in Table 1.

2.2. Batch experiments

The adsorption of Eu(III) on TiO₂ particles was investigated by using batch technique under N₂ condition at $T=20\pm2$ °C in 0.01 mol/L NaClO₄ solutions. All solutions were prepared using Milli-Q water, and all experiments were conducted in polyethylene tubes. The aqueous solution volume was adjusted with a solution containing background electrolyte NaClO₄, Eu(III), FA, TiO₂ and Milli-Q water. Soil FA was first equilibrated with TiO₂ suspension for 3 days, and then Eu(III) stock solution was added into FA-TiO₂ suspension to start the adsorption of Eu(III) on FA-TiO₂ hybrids. HClO₄ or NaOH were added to achieve the desired pH of the aqueous suspensions. The test tubes were shaken for 4 days to achieve the adsorption equilibration. Our pre-experiments demonstrated that 4 days were enough to achieve the equilibration of Eu(III) adsorption on TiO₂. For adsorption isotherms, the pH was maintained to 4.50 ± 0.05 . After equilibration, the suspension was centrifuged at 18,000 rpm for 30 min at temperature controlled at 20 °C to separate the solid phase from the liquid one. The concentration of Eu(III) adsorbed on TiO₂, $C_{\rm s}$ (mol/g), was calculated from the difference of initial Eu(III) concentration (C_0) and final concentration remained in solution after equilibrium (C_{eq}) , the volume of the solution (V)and the mass of TiO₂ (*m*) with the equation $C_s = (C_0 - C_{eq}) \times V/m$.

2.3. X-ray photoelectron spectroscopy (XPS) analysis

For spectroscopic analysis, adsorption experiments were conducted with 0.3 g/L TiO₂, 0.01 mol/L NaClO₄ and $3.0 \times 10^{-5} \text{ mol/L}$ Eu(III) at pH=4.5 ± 0.1. The solid was separated by filtration and subsequently washed with 0.01 mol/L NaClO₄ solution to remove non-adsorbed Eu(III), and then the solid phases were dried under vacuum and ambient temperature. Only part of free water on solid phases was removed in this treatment, and this treatment did not result in any surface species modification. The XPS spectra were recorded on powders with a thermo ESCALAB 250 spectrometer using an Al K α monochromator source and a multidetection analyzer, under a 10^{-8} Pa residual pressure. Surface charging effects were corrected with C 1s peak at 284.6 eV as a reference.

3. Results and discussion

3.1. SEM images of TiO₂ samples

The field-emission scanning electron microscopy (FE-SEM) was used to observe the changes in morphological features of TiO_2 before and after Eu(III) adsorption in the absence/presence of FA. From Fig. 2(c and d), it can be clearly seen that something appears on the boundary of TiO₂ particles comparing with Fig. 2(a and b).

Fig. 2. SEM images of TiO₂ sample (a), Eu–TiO₂ (b), Eu–FA–TiO₂ (c) and (d).

This is attributed to the surface adsorbed FA on TiO_2 particles. The macromolecular structures of FA result in the obvious difference of SEM images of TiO_2 and FA– TiO_2 colloids. The SEM images indicate the difference of the microstructures and surface properties of TiO_2 and Eu–FA– TiO_2 , which is attributed to the adsorption of Eu(III) and FA on TiO_2 . After the adsorption of FA on TiO_2 particles, the macromolecular structures of FA attract TiO_2 particles together and thereby result in the aggregation of TiO_2 particles. So the sizes of FA– TiO_2 hybrids are bigger than those of pure TiO_2 particles.

3.2. Effect of pH on Eu(III) adsorption to bare TiO_2

Most of the investigations of metal ions' adsorption onto mineral surfaces published so far have confined to the pH-dependent adsorption (so called pH-edges) for one or two adsorbate concentrations. Fig. 3 shows the pH dependence of Eu(III) adsorption on bare TiO2 in 0.01 mol/L NaClO4 aqueous solutions at initial concentrations of Eu(III) $1.0\times10^{-5},~1.0\times10^{-6}$ and $1.0\times10^{-7}\,mol/L,$ respectively. As shown in Fig. 3, solution pH is the key factor to affect the adsorption of Eu(III) on TiO₂ particles. The adsorption of Eu(III) increases slowly at pH range 2-4, abruptly at pH 4–6, and at last maintains high level with increasing pH at pH>6. About 99% of Eu(III) is adsorbed on TiO₂ at pH > 6. The strong pHdependent adsorption suggests that Eu(III) adsorption is attributed to inner-sphere surface complexation rather than ion exchange or outer-sphere surface complexation. It is interesting to note that the adsorption edge of Eu(III) shifts to higher pH values with increasing Eu(III) initial concentrations. Similar pH-dependent results of Eu(III) adsorption on oxides were also observed by other researchers [3,5,6].

It is well known that the species of Eu(III) are crucial to Eu(III) adsorption. The species of Eu(III) are strongly dependent on pH value. The relative distribution of Eu(III) species in the aqueous solution calculated with the thermodynamic constants (Table 2) is shown in Fig. 4. It is clear that Eu^{3+} and $Eu(OH)^{2+}$ are the main

Fig. 3. Effect of pH on the adsorption of Eu(III) on bare TiO₂. $T = 20 \pm 2 \,^{\circ}$ C, I = 0.01 mol/L NaClO₄, m/V = 0.3 g (TiO₂)/L, $C_{\text{Eu(III)initial}} = 1.0 \times 10^{-5}$, 1.0×10^{-6} , 1.0×10^{-7} mol/L.

species of Eu(III) in solution at pH < 6.15 (i.e., pH_{pzc}), the free \equiv SOH₂⁺ and \equiv SOH groups are the primary hydroxyl groups [28]. The adsorption of Eu³⁺ and Eu(OH)²⁺ is unfavorable due to the coulombic repulsion. While, the positively charged Eu³⁺ or Eu(OH)²⁺ species in solution may exchange with –H from hydroxyl groups, and the

Table 2

Aqueous thermodynamic data (I = 0.01 M NaClO₄; T = 293.15 K) used in the Eu modeling studies on TiO₂ (thermodynamic data taken from Wang et al. [3]).

Reaction	Log K
$\begin{array}{l} H_2O \Leftrightarrow OH^- + H^+ \\ Eu^{3+} + H_2O \Leftrightarrow Eu(OH)^{2+} + H^+ \\ Eu^{3+} + 2H_2O \Leftrightarrow [Eu(OH)_2]^+ + 2H^+ \\ Eu^{3+} + 3H_2O \Leftrightarrow [Eu(OH)_3]^0 + 3H^+ \\ Eu^{3+} + 4H_2O \Leftrightarrow [Eu(OH)_4]^- + 4H^+ \end{array}$	-13.79 -7.64 -15.1 -23.7 -36.2

Fig. 4. Distribution of hydrolysis products of Eu(III) in aqueous solution.

increase in free hydroxyls concentration is the cause of the steep rise of Eu(III) adsorption. Thereby, the abrupt increase of adsorption does not correspond with the formation of hydrolysis of Eu(III) in solution, but rather due to the strong surface complexation [3]. While at higher pH values, the precipitation of Eu(III) may contribute to the adsorption.

Various SCMs have been developed and applied to simulate the adsorption of metal ions on oxides. The commonly adopted forms include the constant capacitance model (CCM), the diffusion layer model (DLM) and the triple layer model (TLM). Herein, the adsorption data are fitted using the DLM with the aid of FITEQL 3.2 code. On the basis of the complexation reactions and the corresponding equilibrium constants in Table 3, the surface species of Eu(III) adsorbed on TiO_2 as a function of pH is shown in Fig. 5. Clearly, the model simulates the experimental data very well. From Fig. 5, one can see that Eu(III) adsorbed on TiO₂ surface mainly presents as: \equiv SOEu²⁺ is the dominant specie at low pH values, \equiv SOEu(OH)⁺ becomes the major species with increasing pH and \equiv SOEu(OH)₂ is the most abundant surface species at high pH values. This is in agreement with the relative species of Eu(III) in solution shown in Fig. 4. The WSOS/DF = 3.26×10^{-5} , 5.84×10^{-3} , 9.25×10^{-3} are obtained by fitting the Eu(III) adsorption on TiO₂, which indicates the satisfactory optimization procedure (Generally, WSOS/DF values in the range of 0-20 show a good fit of the data) [29].

3.3. Effect of pH on Eu(III) adsorption to bare and FA bound TiO₂

The pH dependence of Eu(III) adsorption on TiO₂ in the presence and absence of FA is shown in Fig. 6. The adsorption curve of Eu(III) on FA–TiO₂ hybrids shifts to the left as compared to that on bare TiO₂ at pH < 6, from which it can be concluded that the presence of FA enhances Eu(III) adsorption at pH < 6. FA has high content of oxygen due to the carboxyl and hydroxyl groups, which form strong complexes with metal ions [26,27]. The increase of Eu(III) adsorption on FA–TiO₂ hybrids is explained by the adsorption of FA on TiO₂ surface, followed by the strong complexation of Eu(III) with surface adsorbed FA on TiO₂ surfaces. This indicates that the complexation between FA and Eu(III) is stronger than that between

Fig. 5. Surface complex speciation repartition diagram of Eu(III) adsorption on TiO_2 as a function of pH at three different initial concentration.

Table 3

Surface complexation constants (pK_a) for Eu(III) adsorption on TiO₂ at different concentration.

	$1.0 \times 10^{-7} \text{ mol/L}$ Log K_{a}	$1.0 \times 10^{-6} \text{ mol/L}$ Log K_a	$1.0 \times 10^{-5} \text{ mol/L}$ Log K_a
$\equiv SOH + Eu^{3+} \Leftrightarrow \equiv SOEu^{2+} + H^+$	-1.67	-2.37	-2.08
$\equiv SOH + Eu^{3+} + H_2O \Leftrightarrow \equiv SOEu(OH)^+ + 2H^+$	-6.20	-6.45	-6.75
$\equiv SOH + Eu^{3+} + 2H_2O \Leftrightarrow \equiv SOEu(OH)_2 + 3H^+$	-9.44	-11.18	-14.90
WSOS/DF	3.26×10^{-5}	5.84×10^{-3}	9.25×10^{-3}

Fig. 6. Effect of pH on the adsorption of Eu(III) on bare, FA bound TiO₂. $T = 20 \pm 2 \degree C$, $I = 0.01 \mod/L$ NaClO₄, m/V = 0.3 g (TiO₂)/L, $C(FA)_{initial} = 7.5 mg/L$, $C_{Eu(III)initial} = 1.0 \times 10^{-6} mol/L$.

 TiO_2 and Eu(III) [3,4]. At low pH values, the negatively charged HSs are easily to be adsorbed on positively surface charged oxides, and the strong complexation of metal ions with HSs adsorbed on oxides results in the increase of metal ion adsorption on HSs bound oxides. The adsorption of metal ions on HSs bound oxides is dominated by the nature of HSs, the nature of metal ions, the nature of solid particles, pH, ionic strength, and temperature etc. [28,30].

3.4. Effect of ionic strength on Eu(III) adsorption to bare and FA bound TiO_2

Fig. 7 shows the adsorption of Eu(III) on TiO₂ as a function of ionic strength at pH 4.30 ± 0.05 . Within the experimental uncertainties, the adsorption of Eu(III) on TiO₂ is independent of ionic strength in the range of 0-0.2 mol/L NaClO₄. It is well known that ClO_4^- does not form complexes with Eu(III) in solution, the influence of NaClO₄ is only attributed to the competition of Na⁺ in the system. The ionic strength independent of Eu(III) adsorption suggests that the formation of strong inner-sphere surface complexes even under conditions where the net surface charge of TiO₂ is positive (pH_{pzc} = 6.15). This indicates that the influence of surface potential on the adsorption reaction is of minor importance for the metal ions of high charge ($z \ge 3+$) [6]. The ion exchange does not contribute to the adsorption of Eu(III) on TiO₂. The results are also in agreement with the DLM modeling in Fig. 4. The uptake of metal ions in the adsorption edges, which exhibits a strong

Fig. 7. Effect of ionic strength on Eu(III) adsorption to bare, FA bound TiO₂ particles. $T = 20 \pm 2 \degree C$, m/V = 0.3 g (TiO₂)/L, pH = 4.30 ± 0.05, *C*(FA)_{initial} = 7.5 mg/L, $C_{\text{Eu(III)initial}} = 1.0 \times 10^{-6}$ mol/L.

Fig. 8. Effect of FA concentration on Eu(III) adsorption to FA bound TiO₂ particles. $T = 20 \pm 2 \degree C$, I = 0.01 mol/L NaClO₄, $m/V = 0.3 \text{ g}(\text{TiO}_2)/\text{L}$, pH = 4.50 ± 0.05, $C_{\text{Eu(III)initial}} = 1.0 \times 10^{-6} \text{ mol/L}$.

dependency on pH and weak dependency on ionic strength, is consistent with inner-sphere surface complexation. The results of this work are identical to those derived by Wang et al. [3] and Rabung et al. [6], although different samples of oxides were investigated.

3.5. Effect of FA concentrations on Eu(III) adsorption

Fig. 8 shows the removal percentage of Eu(III) from solution to FA-TiO₂ hybrids as a function of FA initial concentrations at pH 4.50 ± 0.05 in 0.01 mol/L NaClO₄ solutions. At this pH, the surface charge of TiO₂ is positive and the negatively charged FA is easily adsorbed on the surface of TiO₂. Adsorption percentage of Eu(III) on solid phases increases with increasing FA concentration in the ternary system, which indicates that the surface complexation of Eu(III) with surface adsorbed FA is stronger than that of Eu(III) with TiO₂ surface functional groups. With increasing FA concentration, more FA macromolecules are adsorbed on TiO₂ surfaces, and the surface adsorbed FA thereby provides more functional groups to bind Eu(III). At FA concentrations higher than 10.9 mg/L, the Eu(III) adsorption decreases with increasing FA concentration. From the result of acid-base titration of FA [31], the surface site density of FA is 2.71×10^{-2} mol/g. The surface site density of TiO₂ is 2.74×10^{-4} mol/g. Considering the concentrations of FA and TiO₂ in the system, the surface site concentration of TiO₂ in the system is 8.22×10^{-5} mol/L (i.e., $0.3 \text{ g/L} \times 2.74 \times 10^{-4}$ mol/g). If all the surface sites of FA can form mono-surface complexes with TiO₂, 3 mg/L FA is enough to form the saturation adsorption of FA on TiO₂ surfaces. However, only fraction of functional groups of FA forms complexes on TiO₂ surfaces. With increasing FA concentrations, the percent of FA adsorbed on TiO₂ decreases and the percent of FA remained in solution increases. The effect of FA concentration on Eu(III) adsorption is attributable to the competition for Eu(III) between the FA in solution and the FA adsorbed on the mineral surfaces [32]. At $C(FA)_{initial} > 10.9 \text{ mg/L}$, the surface of the mineral is saturated with FA, the more the concentration of FA presents, the more the free FA macromolecules present in solution and the more efficient is the screening of the mineral surface. Under these conditions, the Eu(III) is more predominately in solution as Eu(III)-FA complexes. Thereby, the adsorption of Eu(III) decrease with increasing FA concentration at high FA concentrations.

3.6. Adsorption isotherms of Eu(III) on bare and FA bound TiO_2

Adsorption isotherms of Eu(III) on bare and FA bound TiO₂ particles are studied at pH 4.50 ± 0.05 in $0.01 \text{ mol/L NaClO}_4$ solutions (Fig. 9). Adsorption isotherm of Eu(III) on FA–TiO₂ hybrids is much higher than that of Eu(III) on bare TiO₂ particles, indicating that the adsorption of Eu(III) on FA–TiO₂ hybrids is higher than that of Eu(III) on bare TiO₂. This is in agreement with the results shown in Fig. 6. In order to gain a better understanding of the mechanism and to quantify the adsorption data, two models, the Langmuir and Freundlich isotherm models, are adopted to simulate the results.

The Langmuir model is widely used for modeling equilibrium data [33]. The isotherm is valid for monolayer adsorption onto a surface containing finite number of identical sites. It can be described by the equation:

$$C_{\rm s} = \frac{K_{\rm a}q_{\rm max}C_{\rm eq}}{1+bC_{\rm eq}} \tag{1}$$

where C_{eq} is the concentration of Eu(III) in solution at equilibration, C_s is the amount of Eu(III) adsorbed to form a monolayer coverage on the adsorbent particle, and K_a is the Langmuir adsorption equilibrium constant.

The Freundlich expression is an empirical equation describing adsorption onto heterogeneous surface [34]. The isotherm assumes

Table 4

Parameter of adsorption models for Eu(III) on TiO₂.

Fig. 9. Adsorption isotherms of Eu(III) on bare, FA bound TiO₂ particles. $T = 20 \pm 2 \degree C$, $I = 0.01 \text{ mol}/\text{L} \text{ NaClO}_4$, $C(FA)_{\text{initial}} = 7.5 \text{ mg/L}$, $m/V = 0.3 \text{ g(TiO_2)/L}$, $pH = 4.50 \pm 0.05$. Solid line: Langmuir model; dash line: Freundlich model.

that the surface sites of the adsorbent have a spectrum of different binding energies. The equation is presented as:

$$C_{\rm s} = k_{\rm F} C_{\rm eq}^{1/n} \tag{2}$$

System	Langmuir model			Freundlich model		
	q _{max} (mmol/g)	K _a (L/mmol)	R^2	K _F (mmol/g)	п	R ²
Bare	0.00991	163.3	0.9944	4.7	1.73	0.9896
Add FA	0.01773	733.7	0.9412	1.7	2.49	0.9922

Fig. 10. XPS spectra of survey (A), Eu 3d (B), C1s (C) and O1s (D) of Eu–TiO₂ and Eu–FA–TiO₂. $T=20\pm2$ °C, I=0.01 mol/L NaClO₄, m/V=0.3 g (TiO₂)/L, pH=4.50\pm0.05, C(FA)_{initial} = 7.5 mg/L, C_{Eu(III)initial} = 1.0 × 10⁻⁵ mol/L.

where K_F (mmol/g) is the adsorption capacity. The value of *n* indicates a favorable adsorption at 1 < n < 10.

The Langmuir and Freundlich constants obtained by fitting the adsorption equilibrium data are listed in Table 4. The results indicate that the Langmuir model and the Freundlich model fit the adsorption well of Eu(III) onto bare TiO₂. However, the adsorption of Eu(III) onto TiO₂ in the presence of FA is poorly fitted by the Langmuir model compared with the Freundlich model. This means the adsorption behavior of Eu(III) is very complicated and might be affected by many factors in the presence of FA. The value of q_{max} obtained from the Langmuir model for Eu(III) adsorption on FA bound TiO₂ is higher than that on bare TiO₂, which indicates that the functional groups on the surfaces of FA–TiO₂ hybrids have a relatively stronger affinity for Eu(III) than those on bare TiO₂ surface. In the Freundlich model, the value of *n* is higher than unity, which indicates that metal ions are favorably adsorbed by TiO₂.

3.7. XPS analysis

In order to achieve the molecular level information of Eu(III) adsorbed on TiO₂, XPS (Fig. 10(A)) was used to identify the local species of Eu(III) adsorbed on TiO₂. The high resolution XPS Eu 3d spectra are shown in Fig. 10(B). The data leave no doubt that Eu(III) is chemically present within the near-surface of TiO₂ due to the adsorption. The XPS features of Eu $3d_{5/2}$ at 1136 eV and Eu $3d_{3/2}$ at 1166 eV in the samples, with a peak separation of 30 eV between the two peaks, are associated with inner-sphere surface complexes of Eu(III). The high resolution XPS C 1s spectra of the Eu–FA–TiO₂ and Eu–TiO₂ samples are shown in Fig. 10(C). The high resolution XPS C 1s spectrum of Eu–FA–TiO₂ hybrids is resolved into three individual component peaks: C–C (284.79 eV), CO (286.32 eV) and COO (288.52 eV), which indicates that the functional groups of FA are introduced in the TiO₂.

The Eu–TiO₂ sample has four O1s peaks positioned at 529.9, 531.2, 532.2 and 533.3 eV (Fig. 10(D)), which can be assigned to lattice oxygen O^{2–}, bridging OH, terminal OH and adsorbed H₂O, respectively [35]. The OH attributes greatly to the sorption of Eu(III) on TiO₂ surface. While in the Eu–FA–TiO₂ sample, the O1s spectrum is also deconvoluted into four peaks. The relative intensity of peak at 531.2 eV decreases, while the relative intensities of peaks at 532.2 and 533.3 eV increase. The increased peaks can also be assigned to other oxygen species, CO (532.2 eV) and COO (533.3 eV) [36], which are more easily to complex with Eu(III). Anyway, the positions of the O1s peaks from the Eu–TiO₂ system are nevertheless different from those of the Eu–FA–TiO₂. The functional groups of FA at the TiO₂ surfaces contribute to Eu(III) adsorption (as explained in the previous part).

4. Conclusion

The adsorption of Eu(III) on TiO₂ is strongly dependent on pH values and independent of ionic strength, indicating that inner-sphere surface complexation is the main adsorption mechanism. The presence of FA enhances the adsorption of Eu(III) on TiO₂ at low pH values. The competition between the complexation of adsorbed FA and the soluble FA in solution with Eu(III) can explain the observations of Eu(III) adsorption on FA–TiO₂ hybrids. The Eu(III) adsorbed on TiO₂ can be assumed in the form of inner-sphere surface complexes of \equiv SOEu²⁺, \equiv SOEu(OH)⁺ and \equiv SOEu(OH)₂. The experimental data can be simulated well with DLM with the aid of FITEQL 3.2 mode. The batch and XPS results indicate the same/similar species and mechanism of Eu(III) adsorption on TiO₂ surface. The results are important to understand the adsorption of trivalent lanthanides/actinides in the environment.

Acknowledgements

Financial support from National Natural Science Foundation of China (20677058; 20501019), 973 project from Ministry of Science and Technology of China (2007CB936602) are acknowledged.

References

- A.J. Fairhurst, P. Warwick, S. Richardson, The influence of humic acid on the sorption of europium onto inorganic colloids as a function of pH, Colloids Surf. A 99 (1995) 187–199.
- [2] D. Xu, Q.L. Ning, X. Zhou, C.L. Chen, A.D. Wu, X.K. Wang, Sorption and desorption of Eu(III) on alumina, J. Radioanal. Nucl. Chem. 266 (2005) 419–424.
- [3] X. Wang, D. Xu, L. Chen, X. Tan, X. Zhou, A. Ren, Ch. Chen, Sorption and complexation of Eu(III) on alumina: effect of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study, Appl. Radiat. Isot. 64 (2006) 414–421.
- [4] W.M. Dong, X.K. Wang, X.Y. Bian, A.X. Wang, J.Z. Du, Z.Y. Tao, Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth, Appl. Radiat. Isot 54 (2001) 603–610.
- [5] A. Naveau, F. Monteil-Rivera, J. Dumonceau, S. Boudesocque, Sorption of europium on a goethite surface: influence of background electrolyte, J. Contam. Hydrol. 77 (2005) 1–16.
- [6] Th. Rabung, Th. Stumpf, H. Geckeis, R. Klenze, J.I. Kim, Sorption of Am(III) and Eu(III) onto γ-alumina: experiment and modeling, Radiochim. Acta 88 (2000) 711–716.
- [7] M.H. Bradbury, B. Baeyens, Experimental measurements and modeling of sorption competition on montmorillonite, Geochim. Cosmochim. Acta 69 (2005) 4187–4197.
- [8] V.A. Sinitsyn, S.U. Aja, D.A. Kulik, S.A. Wood, Acid-base surface chemical and sorption of some lanthanides on K⁺-saturated Marblehead illite: I. Result of an experimental investigation, Geochim. Cosmochim. Acta 64 (2000) 185–194.
- [9] T. Rabung, H. Geckeis, J. Kim, H.P. Beck, Sorption of Eu(III) on a natural hematite: application of a surface complexation model, J. Colloid Interf. Sci. 208 (1998) 153-161.
- [10] M.H. Bradbury, B. Baeyens, Sorption of Eu on Na- and Ca-montmorillonites: experimental investigation and modeling with cation exchange and surface complexation, Geochim. Cosmochim. Acta 66 (2002) 2325–2334.
- [11] G. Montavon, T. Rabung, H. Geckeis, B. Grambow, Interaction of Eu(III)/Cm(III) with alumina-bound poly(acrylic acid): sorption, desorption, and spectroscopic studies, Environ. Sci. Technol. 38 (2004) 4312–4318.
- [12] Th. Rabung, M.C. Pierret, A. Bauer, H. Geckeis, M.H. Bradbury, B. Baeyens, Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part I: batch sorption and time-resolved laser fluorescence spectroscopy experiments, Geochim. Cosmochim. Acta 69 (2005) 5393–5402.
- [13] Y. Takahashi, T. Kimura, Y. Kato, Y. Minai, Speciation of europium sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laser-induced fluorescence spectroscopy, Environ. Sci. Technol. 33 (1999) 4016–4021.
- [14] M.L. Schlegel, I. Pointeau, N. Coreau, P. Reiller, Mechanism of europium retention by calcium silicate hydrates: an EXAFS study, Environ. Sci. Technol. 38 (2004) 4423–4431.
- [15] Th. Stumpf, A. Bauer, F. Coppin, Th. Fanghänel, J.I. Kim, Inner-sphere, outersphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite, Radiochim. Acta 90 (2002) 345–349.
- [16] J.R. Lead, J. Hamilton-Taylor, A. Peters, S. Reiner, E. Tipping, Europium binding by fulvic acids, Anal. Chim. Acta 369 (1998) 171–180.
- [17] D.G. Kinniburgh, C.J. Milne, M.F. Benedetti, J.P. Pinheiro, J. Filius, L.K. Koopal, et al., Metal ion binding by humic acid: application of the NICA-Donnan model, Environ. Sci. Technol. 30 (1996) 1687–1698.
- [18] A.M. Jakobsson, Measurement and modeling of Th sorption onto TiO₂, J. Colloid Interf. Sci. 220 (1999) 367–373.
- [19] M.S. Kim, K.M. Hong, J.G. Chung, Removal of Cu from aqueous solutions by adsorption process with anatase-type titanium dioxide, Water Res. 37 (2003) 3524–3529.
- [20] P.A. O'Day, C.J. Chrisholm-Brause, S.N. Towle, G.A. Parks, G.E. Brown Jr., X-ray absorption spectroscopy of Co(II) sorption complexes on quartz (α -SiO₂) and rutile (TiO₂), Geochim. Cosmochim. Acta 60 (1996) 2432–2515.
- [21] K.P. Saripalli, B.P. McGrail, D.C. Girvin, Adsorption of molybdenum on to anatase from dilute aqueous solutions, Appl. Geochem. 17 (2002) 649–656.
- [22] M.S. Vohra, A.P. Davis, Adsorption of Pb(II), NTA, and Pb(II)–NTA onto TiO₂, J. Colloid Interf. Sci. 194 (1997) 59–67.
- [23] C.S. Uyguner, M. Bekbolet, Evaluation of humic acid, chromium(VI) and TiO₂ ternary system in relation to adsorptive interactions, Appl. Catal. B 49 (2004) 267–275.
- [24] C.H. Weng, J.H. Wang, C.P. Huang, Adsorption of Cr(VI) onto TiO₂ from dilute aqueous solutions, Water Sci. Tech. 35 (1997) 55–62.
- [25] M. Olsson, A.M. Jakobsson, Y. Albinsson, Sorption of Pu(VI) onto TiO₂, J. Colloid Interf. Sci 266 (2003) 269–275.
- [26] Z.Y. Tao, J. Zhang, J. Zhai, Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy, Anal. Chim. Acta 395 (1999) 199–203.
- [27] J. Zhang, J.J. Zhai, F.Z. Zhao, Z.Y. Tao, Study of soil humic substances by cross-polarization magic angle spinning ¹³C nuclear magnetic resonance and pyrolysis-capillary gas chromatography, Anal. Chim. Acta 378 (1999) 177–182.

- [28] X. Tan, X. Wang, M. Fang, C. Chen, Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods, Colloids Surf. A 296 (2007) 109–116.
- [29] A.L. Heberlin, J.C. Westall, FITEQL: A computer program for determination of equilibrium constants from experimental data, Version 3.2, Report 96-01, Department of Chemistry, Oregon State University, 1996.
- [30] C.L. Chen, X.K. Wang, Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto γ-Al₂O₃, Appl. Geochem. 22 (2007) 436–445.
- [31] X.L. Tan, X.K. Wang, H. Geckeis, Th Rabung, Sorption of Eu(III) on humic acid or fulvic bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques, Environ. Sci. Technol. 42 (2008) 6532–6537.
- [32] Y. Wan, C. Liu, The effect of humic acid on the adsorption of REE on Kaolin, Colloids Surf. A 290 (2006) 112–117.
- [33] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.
- [34] H.M.F. Freundlich, Uber die adsorption in lasungen, J. Phys. Chem. 57 (1906) 385-470.
- [35] P.L. Cao, D.E. Ellis, V.P. Dravid, First-principles study of initial stage of Ni thin-film growth on a TiO_2 (110) surface, J. Mater. Res. 14 (1999) 3684–3689.
- [36] H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II), J. Colloid Interf. Sci. 316 (2007) 277–283.